Login / Signup

Casein kinase 1α regulates murine spermatogenesis via p53-Sox3 signaling.

Chenyang LuDi ZhangJinglin ZhangLiuhui LiJingtao QiuKemian GouSheng Cui
Published in: Development (Cambridge, England) (2022)
Casein kinase 1α (CK1α), acting as one member of the β-catenin degradation complex, negatively regulates the Wnt/β-catenin signaling pathway. CK1α knockout usually causes both Wnt/β-catenin and p53 activation. Our results demonstrated that conditional disruption of CK1α in spermatogonia impaired spermatogenesis and resulted in male mouse infertility. The progenitor cell population was dramatically decreased in CK1α conditional knockout (cKO) mice, while the proliferation of spermatogonial stem cells (SSCs) was not affected. Furthermore, our molecular analyses identified that CK1α loss was accompanied by nuclear stability of p53 protein in mouse spermatogonia, and dual-luciferase reporter and chromatin immunoprecipitation assays revealed that p53 directly targeted the Sox3 gene. In addition, the p53 inhibitor pifithrin α (PFTα) partially rescued the phenotype observed in cKO mice. Collectively, our data suggest that CK1α regulates spermatogenesis and male fertility through p53-Sox3 signaling, and they deepen our understanding of the regulatory mechanism underlying the male reproductive system.
Keyphrases