Anomalous Conductance near Percolative Metal-Insulator Transition in Monolayer MoS2 at Low Voltage Regime.
Byoung Hee MoonJung Jun BaeGang Hee HanHyun KimHomin ChoiYoung Hee LeePublished in: ACS nano (2019)
Conductivity of the insulating phase increases generally at an elevated drain-source voltage due to the field-enhanced hopping or heating effect. Meanwhile, a transport mechanism governed by percolation in a low compensated semiconductor gives rise to the reduced conductivity at a low-field regime. Here, in addition to this behavior, we report the anomalous conductivity behavior to transform from a percolative metallic to an insulating phase at the low voltage regime in monolayer molybdenum disulfide (MoS2). Percolation transport at low source-drain voltage is governed by inhomogeneously distributed potential in strongly interacting monolayer MoS2 with a substrate, distinct from the quantum phase transition in multilayer MoS2. At a high source-drain voltage regime, the insulating phase is transformed further to a metallic phase, exhibiting multiphases of metallic-insulating-metallic transitions in monolayer MoS2. These behaviors highlight MoS2 as a model system to study various classical and quantum transports as well as metal-insulator transition in two-dimensional systems.