Login / Signup

Role of Proinsulin Self-Association in Mutant INS Gene-Induced Diabetes of Youth.

Jinhong SunYi XiongXin LiLeena HaatajaWei ChenSaiful A MirLi LvRachel MadleyDennis LarkinArfah AnjumBalamurugan DhayalanNischay RegeNalinda P WickramasingheMichael A WeissPamela Itkin-AnsariRandal J KaufmanDavid A OstrovPeter ArvanMing Liu
Published in: Diabetes (2020)
Abnormal interactions between misfolded mutant and wild-type (WT) proinsulin (PI) in the endoplasmic reticulum (ER) drive the molecular pathogenesis of mutant INS gene-induced diabetes of youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, PI-WT dimerizes in the ER. Here, we suggest that the normal PI-PI contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that PI B-chain tyrosine-16 (Tyr-B16), which is a key residue in normal PI dimerization, helps confer dominant-negative behavior of MIDY mutant PI-C(A7)Y. Substitutions of Tyr-B16 with either Ala, Asp, or Pro in PI-C(A7)Y decrease the abnormal interactions between the MIDY mutant and PI-WT, rescuing PI-WT export, limiting ER stress, and increasing insulin production in β-cells and human islets. This study reveals the first evidence indicating that noncovalent PI-PI contact initiates dominant-negative behavior of misfolded PI, pointing to a novel therapeutic target to enhance PI-WT export and increase insulin production.
Keyphrases
  • wild type
  • type diabetes
  • endoplasmic reticulum
  • cardiovascular disease
  • physical activity
  • gene expression
  • adipose tissue
  • young adults
  • breast cancer cells
  • diabetic rats
  • pi k akt