Login / Signup

Impact of cross-linking of polymers on transport of salt and water in polyelectrolyte membranes: A mesoscopic simulation study.

Dipak AryalVenkat Ganesan
Published in: The Journal of chemical physics (2018)
Our recent atomistic simulation studies demonstrated that the transport properties of salt ions and water in non-crosslinked polymer electrolyte membrane exhibit an intriguing dependence on salt concentration that is opposite to that seen in electrolyte solutions. Here, we extend our study to probe the influence of the degree of cross-linking of the polymer on the transport properties of salt and water in polymer electrolyte membranes. Towards this objective, we use a coarse-grained model embedded within dissipative particle dynamics (DPD) mesoscale simulations, which allows us to access time scales necessary for studying crosslinked polymer systems. Our DPD simulations on non-crosslinked membranes reproduce results that are in qualitative agreement with our atomistic simulations. For the case of crosslinked membranes, our results demonstrate that the diffusion of salt ions and water is reduced significantly relative to crosslinked systems. However, the trends exhibited by the salt concentration dependence of diffusivities and the coordination of the cations with anions and with the polymer backbone remain qualitatively similar to those observed in non-crosslinked membranes.
Keyphrases
  • molecular dynamics
  • ionic liquid
  • hyaluronic acid
  • molecular dynamics simulations
  • quantum dots
  • monte carlo
  • ion batteries
  • single molecule
  • case control