Login / Signup

Rational Design of Zinc/Zeolite Catalyst: Selective Formation of p-Xylene from Methanol to Aromatics Reaction.

Ning WangJing LiWenjing SunYilin HouLan ZhangXiaomin HuYifeng YangXiao ChenCongmei ChenBiaohua ChenWeizhong Qian
Published in: Angewandte Chemie (International ed. in English) (2022)
The production of p-xylene from the methanol to aromatics (MTA) reaction is challenging. The catalytic stability, which is inversely proportional to the particle size of the zeolite, is not always compatible with p-xylene selectivity, which is inversely proportional to the external acid sites. In this study, based on a nano-sized zeolite, we designed hollow triple-shelled Zn/MFI single crystals using the ultra-dilute liquid-phase growth technique. The obtained composites possessed one ZSM-5 layer (≈30 nm) in the middle and two silicalite-1 layers (≈20 nm) epitaxially grown on two sides of ZSM-5, which exhibited a considerably long lifetime (100 % methanol conversion >40 h) as well as an enhanced shape selectivity of p-xylene (>35 %) with a p-xylene/xylene ratio of ≈90 %. Importantly, using this sandwich-like zeolite structure, we directly imaged the Zn species in the micropores of only the ZSM-5 layer and further determined the specific structure and anchor location of the Zn species.
Keyphrases
  • carbon dioxide
  • heavy metals
  • photodynamic therapy
  • ionic liquid
  • room temperature
  • high resolution
  • highly efficient
  • metal organic framework
  • structural basis
  • liquid chromatography