Pharmacological approach using Doxycycline and Tocopherol in rotenone induced oxidative stress, neuroinflammation and Parkinson's like symptoms.
Shamsher SinghKanupriya ChauhanPublished in: The International journal of neuroscience (2022)
BackgroundParkinson's disease (PD) is a second most common neurodegenerative disorder characterized by the selective and progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNPC). Rotenone is a neurotoxin which selectively degenerate dopaminergic neurons in striatum, leading to cause PD like symptoms. Method Rotenone was administered at a dose of 1.5 mg/kg, i.p. from day 1 to day 40. Treatment with doxycycline (50 and 100 mg/kg, p.o), tocopherol (5 mg and 10 mg/kg, p.o) alone, doxycycline (50 mg/kg, p.o) in combination with tocopherol (10 mg/kg, p.o), and ropinirole (0.5 mg/kg, i.p.) was given for 40 days 1 hour prior to administration of rotenone. All behavioral parameters were analyzed on weekly basis. On day 41, animals were sacrificed and the striatum region was isolated for neurotransmitters estimation (dopamine, serotonin, norepinephrine, GABA and glutamate), biochemical analysis (GSH, nitrite, LPO, mitochondrial complexes I and IV), inflammatory markers estimation (IL-6, IL-1β and TNF-α) and activity of MAO-A, MAO-B. Result Doxycycline and tocopherol in combination significantly attenuated behavioral, neurotransmitters and biochemical alterations induced by rotenone in experimental rats as compared to alone treatment with DOX and TOCO. Similarly, DOX and TOCO combination significantly reduced the level of inflammatory markers, prevented the biochemical changes, decreased MAO-A and MAO-B and improved complex-I, complex-IV, cAMP levels significantly. Conclusion The current study revealed that a combination of doxycycline with tocopherol contributed to the prevention of PD like symptoms in rats by antioxidant, anti-inflammatory, MAO inhibitory and neuromodulatory mechanisms.