Login / Signup

Modeling the Influence of Synaptic Plasticity on After-effects.

Semra FosterTom ChristiansenMichael C Antle
Published in: Journal of biological rhythms (2019)
While circadian rhythms in physiology and behavior demonstrate remarkable day-to-day precision, they are also able to exhibit plasticity in a variety of parameters and under a variety of conditions. After-effects are one type of plasticity in which exposure to non-24-h light-dark cycles (T-cycles) will alter the animal's free-running rhythm in subsequent constant conditions. We use a mathematical model to explore whether the concept of synaptic plasticity can explain the observation of after-effects. In this model, the SCN is composed of a set of individual oscillators randomly selected from a normally distributed population. Each cell receives input from a defined set of oscillators, and the overall period of a cell is a weighted average of its own period and that of its inputs. The influence that an input has on its target's period is determined by the proximity of the input cell's period to the imposed T-cycle period, such that cells with periods near T will have greater influence. Such an arrangement is able to duplicate the phenomenon of after-effects, with relatively few inputs per cell (~4-5) being required. When the variability of periods between oscillators is low, the system is quite robust and results in minimal after-effects, while systems with greater between-cell variability exhibit greater magnitude after-effects. T-cycles that produce maximal after-effects have periods within ~2.5 to 3 h of the population period. Overall, this model demonstrates that synaptic plasticity in the SCN network could contribute to plasticity of the circadian period.
Keyphrases
  • single cell
  • cell therapy
  • magnetic resonance imaging
  • cell proliferation
  • bone marrow
  • signaling pathway
  • endoplasmic reticulum stress
  • contrast enhanced