Estimates of pandemic excess mortality in India based on civil registration data.
Murad BanajiAashish GuptaPublished in: PLOS global public health (2022)
The population health impacts of the COVID-19 pandemic are less well understood in low and middle-income countries, where mortality surveillance before the pandemic was patchy. Interpreting the limited all-cause mortality data available in India is challenging. We use existing data on all-cause mortality from civil registration systems of twelve Indian states comprising around 60% of the national population to understand the scale and timing of excess deaths in India during the COVID-19 pandemic. We carefully characterize the reasons why registration is incomplete and estimate the extent of coverage in the data. Comparing the pandemic period to 2019, we estimate excess mortality in twelve Indian states, and extrapolate our estimates to the rest of India. We explore sensitivity of the estimates to various assumptions. For the 12 states with available all-cause mortality data, we document an increase of 28% in deaths during April 2020-May 2021 relative to expectations from 2019. This level of increase in mortality, if it applies nationally, would imply 2.8-2.9 million excess deaths. More limited data from June 2021 increases national estimates of excess deaths during April 2020-June 2021 to 3.8 million. With more optimistic or pessimistic assumptions, excess deaths during this period could credibly lie between 2.8 million and 5.2 million. The scale of estimated excess deaths is broadly consistent with expectations based on seroprevalence and COVID-19 fatality rates observed internationally. Moreover, the timing of excess deaths and recorded COVID-19 deaths is similar-they rise and fall at the same time. The surveillance of pandemic mortality in India has been extremely poor, with 8-10 times as many excess deaths as officially recorded COVID-19 deaths. India is among the countries most severely impacted by the pandemic. Our approach highlights the utility of all-cause mortality data, as well as the significant challenges in interpreting it.