Adrenocortical carcinoma (ACC) and pheochromocytoma/paraganglioma (PPGL) are two rare types of adrenal gland malignancies. Regarding hereditary tumors, some patients with ACC are associated with with Li-Fraumeni syndrome (LFS), and those with PPGL with multiple endocrine neoplasia type 2. Recent studies have expanded this spectrum to include other types of hereditary tumors, such as Lynch syndrome or familial adenomatous polyposis. Individuals harboring germline TP53 pathogenic variants that cause LFS have heterogeneous phenotypes depending on the respective variant type. As an example, R337H variant found in Brazilian is known as low penetrant. While 50-80% of pediatric ACC patients harbored a LFS, such a strong causal relationship is not observed in adult patients, which suggests different pathophysiologies between the two populations. As for PPGL, because multiple driver genes, such as succinate dehydrogenase (SDH)-related genes, RET, NF1, and VHL have been identified, universal multi-gene germline panel testing is warranted as a comprehensive and cost-effective approach. PPGL pathogenesis is divided into three molecular pathways (pseudohypoxia, Wnt signaling, and kinase signaling), and this classification is expected to result in personalized medicine based on genomic profiles. It remains unknown whether clinical characteristics differ between cases derived from genetic predisposition syndromes and sporadic cases, or whether the surveillance strategy should be changed depending on the genetic background or whether it should be uniform. Close cooperation among medical genomics experts, endocrinologists, oncologists, and early investigators is indispensable for improving the clinical management for multifaceted ACC and PPGL.
Keyphrases
- copy number
- genome wide
- end stage renal disease
- chronic kidney disease
- dna repair
- dna methylation
- machine learning
- healthcare
- public health
- signaling pathway
- high grade
- peritoneal dialysis
- case report
- oxidative stress
- deep learning
- late onset
- gene expression
- single cell
- lps induced
- young adults
- inflammatory response
- single molecule