Login / Signup

Nonadiabatic dynamics simulations on internal conversion and intersystem crossing processes in gold(i) compounds.

Xiang-Yang LiuZi-Wen LiWei-Hai FangGanglong Cui
Published in: The Journal of chemical physics (2018)
The position at which the second gold(i)-phosphine group is attached was experimentally found to play a noticeable role in intersystem crossing rates of gold(i) naphthalene derivatives. However, the physical origin is ambiguous. Herein we have employed generalized trajectory-based surface-hopping dynamics simulations to simulate the excited-state relaxation dynamics of these gold(i) naphthalene compounds including both the intersystem crossing process from the initially populated first excited singlet states S1 to triplet manifolds and internal conversion processes within these triplet states. Our predicted intersystem crossing rates are consistent with experiments very well. On the basis of the present results, we have found that (1) ultrafast and subpicosecond intersystem crossing processes are mainly caused by small energy gaps and large spin-orbit couplings between S1 and Tn; (2) adding the second gold(i)-phosphine group does not increase spin-orbit couplings between S1 and Tn but decrease their values remarkably, which implies that heavy-atom effects are state-specific, not state-universal; (3) the position at which the second gold(i)-phosphine group is attached has a remarkable influence on the electronic structures of S1 and Tn and their relative energies, which affect energy gaps and spin-orbit couplings between S1 and Tn and eventually modulate intersystem crossing rates from S1 to Tn. These new insights are very useful for the design of gold-containing compounds with excellent photoluminescence properties. Finally, this work also exemplifies that different isomers of a compound could have distinct excited-state relaxation dynamics.
Keyphrases
  • molecular dynamics
  • silver nanoparticles
  • density functional theory
  • single molecule
  • energy transfer
  • room temperature
  • mental health
  • physical activity
  • quantum dots
  • high resolution
  • transition metal