Bisphenol A release from CAD/CAM splint materials.
Tristan HampeJulia LierschBernhard WiechensRalf BürgersSebastian KrohnPublished in: European journal of oral sciences (2024)
This study aimed to investigate the bisphenol A (BPA) release from four CAD/CAM splint materials: three polycarbonate-based (DD BioSplint C, Splint Plus Biostar, Temp Premium Flexible) and one polymethylmethacrylate-based (Temp Basic) material. From each material, ten cylindrical samples (n = 40) were immersed in high-performance liquid chromatography (HPLC) grade water following ISO 10993-12 and incubated for 24 h in an incubation shaker at 37°C and 112 rpm. Following BPA derivatization, analysis was performed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). After 24 h of incubation, all investigated materials released significant amounts of BPA compared to water blanks. The material-dependent elution increased in the following order: DD BioSplint C < Splint Plus Biostar < Temp Basic < Temp Premium Flexible. Subtracting extraneous BPA, the concentrations ranged between 2.27 ng/mL and 12.65 ng/mL. After extrapolating the concentrations in relation to the average surface area of occlusal splints, the amount of BPA per mL exceeded the Tolerable Daily Intake (TDI) set by the European Union for a person weighing 70 kg by 1.32-6.16 times. Contrary to the release from previously investigated materials, BPA elution from CAD/CAM splint materials was highly elevated. Considering the increasing adaptation of CAD/CAM techniques, elution from them may represent a relevant BPA source in daily dental practice.
Keyphrases
- ms ms
- high performance liquid chromatography
- liquid chromatography tandem mass spectrometry
- simultaneous determination
- solid phase extraction
- tandem mass spectrometry
- mass spectrometry
- ultra high performance liquid chromatography
- primary care
- physical activity
- gas chromatography
- healthcare
- high resolution
- body mass index
- atomic force microscopy
- weight gain
- oral health
- weight loss