Login / Signup

Description of intermolecular charge transfer with subsystem density-functional theory.

Anika SchulzChristoph R Jacob
Published in: The Journal of chemical physics (2019)
Efficient quantum-chemical methods that are able to describe intermolecular charge transfer are crucial for modeling organic semiconductors. However, the correct description of intermolecular charge transfer with density-functional theory (DFT) is hampered by the fractional charge error of approximate exchange-correlation (xc) functionals. Here, we investigate the charge transfer induced by an external electric field in a tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) complex as a test case. For this seemingly simple model system, a supermolecular DFT treatment fails with most conventional xc functionals. Here, we present an extension of subsystem DFT to subsystems with a fractional number of electrons. We show that within such a framework, it becomes possible to overcome the fractional charge error by enforcing the correct dependence of each subsystem's total energy on the subsystem's fractional charge. Such a subsystem DFT approach allows for a correct description of the intermolecular charge transfer in the TTF-TCNQ model complex. The approach presented here can be generalized to larger molecular aggregates and will thus allow for modeling organic semiconductor materials accurately and efficiently.
Keyphrases
  • density functional theory
  • molecular dynamics
  • energy transfer
  • solar cells
  • quantum dots
  • room temperature
  • combination therapy