Mist chemical vapor deposition of crystalline MoS2atomic layer films using sequential mist supply mode and its application in field-effect transistors.
Abdul KuddusArifuzzaman RajibKojun YokoyamaTomohiro ShidaKeiji UenoHajime ShiraiPublished in: Nanotechnology (2021)
Molybdenum disulfide (MoS2) mono/bilayer have been systematically investigated using atmospheric-pressure mist chemical vapor deposition (mist CVD) from (NH4)2MoS4dissolved in N-methyl-2-pyrrolidone as a precursor. Film deposition was performed by alternating MoS2mist storage within a closed chamber and mist exhaust, i.e. sequential mist supply mode at different furnace temperatures, storage times of precursor, and repetition cycles of mist supply on thermally grown SiO2(th-SiO2) and mist-CVD grown Al1-xTixOy(ATO) layers coated on p+-Si substrates. The average size of the MoS2flake and their number of stack layers could be controlled by tuning the deposition parameters combined with substrate pretreatment. Field-effect transistors with MoS2atomic mono/bilayer as a channel layer exhibited mobility up to 31-40 (43-55) cm2V-1s-1with a threshold voltage of -1.6 (-0.5) V, subthreshold slope of 0.8 (0.11) V dec.-1, and on/off ratio of 3.2 × 104(3.6 × 105) onth-SiO2(ATO) layers as gate dielectric layers without mechanical exfoliation. These findings imply that mist CVD is available for the synthesis of metal transition metal dichalcogenide and metal oxide layers as channel and gate dielectric layers, respectively.