Perfluorinated Zinc Porphyrin Sensitized Photoelectrosynthetic Cells for Enhanced TEMPO-Mediated Benzyl Alcohol Oxidation.
Gabriele Di CarloCecilia AlbaneseAlessandra MolinariStefano CarliRoberto ArgazziAlessandro MinguzziFrancesca TessoreEdoardo MarchiniStefano CaramoriPublished in: ACS applied materials & interfaces (2024)
This research introduces a novel series of perfluorinated Zn(II) porphyrins with positive oxidation potentials designed as sensitizers for photoelectrosynthetic cells, with a focus on promoting the oxidation of benzyl alcohol (BzOH) mediated by the 2,2,6,6-tetramethyl-1-piperidine N -oxyl (TEMPO) organocatalyst. Three dyes, CLICK-3 , CLICK-4 , and BETA-4 , are meticulously designed to explore the impact of substituents and their positions on the perfluorinated porphyrin ring in terms of redox potentials and energy level alignment when coupled with SnO 2 /TiO 2 -based photoanodes and TEMPO mediator. A comprehensive analysis utilizing spectroscopy, electrochemistry, photophysics, and computational techniques of the dyes in solution and sensitized thin films unveils an enhanced charge-separation character in the 4D-π-1A type BETA-4 . Incorporating four dimethylamino donor groups at the periphery of the porphyrin ring and a BTD-accepting linker at the β-pyrrolic position equips the structure with a more efficient donor-acceptor system. This enhancement ensures improved light-harvesting capacity, resulting in a doubled incident photon-to-current conversion efficiency (IPCE% ≃30%) in the presence of LiI compared to meso -substituted dyes CLICK-3 and CLICK-4 . Sensitizing SnO 2 /TiO 2 thin films with BETA-4 successfully promotes the photooxidation of benzyl alcohol (BzOH) in the presence of the rapid TEMPO radical catalyst, yielding photocurrents of approximately 125 μA/cm 2 in an optimized TBPy/LiClO 4 /ACN electrolyte. Notably, when lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) replaces TBPy as the base for TEMPO-catalyzed BzOH oxidation, a remarkable photocurrent of around 800 μA/cm 2 is achieved, marking one of the highest values reported for this photoelectrochemical reaction to date. This study underscores that the proper functionalization of perfluorinated zinc porphyrins positions these dyes as ideal candidates for sensitizing SnO 2 /TiO 2 in the photodriven oxidation of BzOH. It also highlights the crucial role of carefully tuning electrolyte composition based on the electronic properties of molecular sensitizers.
Keyphrases
- visible light
- electron transfer
- ionic liquid
- room temperature
- induced apoptosis
- hydrogen peroxide
- quantum dots
- photodynamic therapy
- energy transfer
- solid state
- reduced graphene oxide
- solar cells
- cell cycle arrest
- metal organic framework
- aqueous solution
- endoplasmic reticulum stress
- cell proliferation
- type diabetes
- risk assessment
- mass spectrometry
- perovskite solar cells
- gold nanoparticles
- oxidative stress
- signaling pathway
- molecular docking
- data analysis