Login / Signup

A glycine zipper motif is required for the translocation of a T6SS toxic effector into target cells.

Jemal AliManda YuLi-Kang SungYee-Wai CheungErh-Min Lai
Published in: EMBO reports (2023)
Type VI secretion systems (T6SSs) can deliver diverse toxic effectors into eukaryotic and bacterial cells. Although much is known about the regulation and assembly of T6SS, the translocation mechanism of effectors into the periplasm and/or cytoplasm of target cells remains elusive. Here, we use the Agrobacterium tumefaciens DNase effector Tde1 to unravel the mechanism of translocation from attacker to prey. We demonstrate that Tde1 binds to its adaptor Tap1 through the N-terminus, which harbors continuous copies of GxxxG motifs resembling the glycine zipper structure found in proteins involved in the membrane channel formation. Amino acid substitutions on G 39 xxxG 43 motif do not affect Tde1-Tap1 interaction and secretion but abolish its membrane permeability and translocation of its fluorescent fusion protein into prey cells. The data suggest that G 39 xxxG 43 governs the delivery of Tde1 into target cells by permeabilizing the cytoplasmic membrane. Considering the widespread presence of GxxxG motifs in bacterial effectors and pore-forming toxins, we propose that glycine zipper-mediated permeabilization is a conserved mechanism used by bacterial effectors for translocation across target cell membranes.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • cell death
  • oxidative stress
  • stem cells
  • amino acid
  • cell proliferation
  • cell therapy
  • big data
  • deep learning