Dinuclear Pt(II) Complexes with Red and NIR Emission Governed by Ligand Control of the Intramolecular Pt-Pt Distance.
Hea Jung ParkClaire Louise BoelkePaul Ha-Yeon CheongDo-Hoon HwangPublished in: Inorganic chemistry (2022)
Red and near-infrared (NIR) phosphorescent double-decker dinuclear Pt(II) complexes were synthesized, and their structural and spectroscopic properties were characterized. The Pt(II) complexes, which are composed of achiral ligands and are themselves chiral, were shown to exist as racemic mixtures using single-crystal X-ray crystallography. The Pt(II) complexes have different intramolecular Pt-Pt distances that are governed by the electronic characteristics of the component C^N ligands. Specifically, strengthening of π-back-donation between Pt(II) and N atom of the C^N ligand leads to shortening of the Pt-Pt distance. The results of both experimental and computational investigations show that the Pt-Pt distances in the dinuclear Pt(II) complexes significantly influence the band gap energies and corresponding emission wavelengths. Consequently, the uncovered C^N ligand based method to finely control intramolecular Pt-Pt distances in dinuclear Pt(II) complexes can be utilized as a guideline for the design of the double-decker dinuclear Pt(II) complexes with red and NIR tuned phosphorescence.