Transcriptional Profiling of Phagocytic Leukocytes and Microglia Reveals a Critical Role for Reactive Oxygen Species in Biofilm Containment during Staphylococcus aureus Craniotomy Infection.
Joseph MenousekChristopher M HornCortney E HeimZachary Van RoyLee E KorshojTammy KielianPublished in: Journal of immunology (Baltimore, Md. : 1950) (2022)
Craniotomies are performed to treat a variety of intracranial pathology. Surgical site infection remains a complication of craniotomy despite the use of prophylactic antibiotics and universal sterile precautions. Infections occur in 1-3% of procedures, with approximately half caused by Staphylococcus aureus that forms a biofilm on the bone flap and is recalcitrant to systemic antibiotic therapy. We used an S. aureus-dsRed construct to compare the phagocytic capacity of leukocytes and microglia in vitro and in vivo using a mouse model of craniotomy infection. In addition, single-cell RNA sequencing (scRNA-seq) was applied to determine whether a transcriptional signature could be identified for phagocytic versus nonphagocytic cells in vivo. S. aureus was phagocytosed to equivalent extents in microglia, macrophages, neutrophils, and granulocytic myeloid-derived suppressor cells in vitro; however, microglial uptake of S. aureus was limited in vivo, whereas the other leukocyte populations exhibited phagocytic activity. scRNA-seq comparing the transcriptional signatures of phagocytic (S. aureus-dsRed+) versus nonphagocytic (S. aureus-dsRed-) leukocytes identified classical pathways enriched in phagocytic cells (i.e., reactive oxygen species [ROS]/reactive nitrogen species, lysosome, iron uptake, and transport), whereas nonphagocytic populations had increased ribosomal, IFN, and hypoxia signatures. scRNA-seq also revealed a robust ROS profile, which led to the exploration of craniotomy infection in NADPH oxidase 2 knockout mice. S. aureus burden, leukocyte recruitment, and intracellular bacterial load were significantly increased in NADPH oxidase 2 KO compared with wild-type animals. Collectively, these results highlight the importance of ROS generation in phagocytes for S. aureus biofilm containment, but not clearance, during craniotomy infection.
Keyphrases
- single cell
- reactive oxygen species
- staphylococcus aureus
- induced apoptosis
- rna seq
- cell cycle arrest
- genome wide
- cell death
- inflammatory response
- pseudomonas aeruginosa
- biofilm formation
- peripheral blood
- mouse model
- neuropathic pain
- candida albicans
- dna damage
- gene expression
- endoplasmic reticulum stress
- transcription factor
- high throughput
- surgical site infection
- risk factors
- endothelial cells
- methicillin resistant staphylococcus aureus
- heat shock
- spinal cord
- cystic fibrosis
- amino acid
- cell therapy