Login / Signup

High-Efficiency Directional Ejection of Coalesced Drops on a Circular Groove.

Yahua LiuXiaojie LiChenguang LuZichao YuanCong LiuJunqiu ZhangLei Zhao
Published in: Langmuir : the ACS journal of surfaces and colloids (2022)
Coalescence-induced drop jumping has received significant attention in the past decade. However, its application remains challenging as a result of the low energy conversion efficiency and uncontrollable drop jumping direction. In this work, we report the high-efficiency coalescence-induced drop jumping with tunable jumping direction via rationally designed millimeter-sized circular grooves. By increasing the surface-droplet impact site area and restricting the oscillatory deformation, the energy conversion efficiency of the jumping droplet reaches 43.5%, 600% as high as the conventional superhydrophobic surfaces. The droplet jumping direction can be tuned from 90° to 60° by varying the principal curvature of the circular groove, while the energy conversion efficiency remains unchanged. We show through theoretical analysis and numerical simulations that the directional jumping mainly originates from reallocation of droplet momentum enabled by the asymmetric liquid bridge impact. Our study demonstrates a simple yet effective method for fast, efficient, and directional droplet removal, which warrants promising applications in jumping droplet condensation, water harvesting, anti-icing, and self-cleaning.
Keyphrases
  • high efficiency
  • single cell
  • high throughput
  • diabetic rats
  • high glucose
  • high frequency
  • working memory
  • oxidative stress
  • pseudomonas aeruginosa
  • ionic liquid
  • quantum dots