Login / Signup

Bilayered BMP2 Eluting Coatings on Graphene Foam by Electrophoretic Deposition: Electroresponsive BMP2 Release and Enhancement of Osteogenic Differentiation.

Qingqing YaoJiajia JingQingyan ZengT L LuYu LiuXiao ZhengQiang Chen
Published in: ACS applied materials & interfaces (2017)
Recent development of three-dimensional graphene foam (GF) with conductive and interconnected macroporous structure is attracting particular attention as platforms for tissue engineering. However, widespread application of GF as bone scaffolds is restricted due to its poor mechanical property and inert surface character. To overcome these drawbacks, in this study, a bilayered biopolymer coating was designed and successfully deposited covering the entire surface area of GF skeleton. A poly(lactic-co-glycolic acid) layer was first dip-coated to strengthen the GF substrate, followed by the electrophoretic codeposition of a hybrid layer, consisting of chitosan and BMP2, to functionalize GF with the ability to recruit and induce osteogenic differentiation of hMSC. Our data indicated that the mechanical property of GF was significantly increased without compromising the macroporous structure. Importantly, the immobilized BMP2 exhibited sustained and electroresponsive release profiles with rapid response to the electric field exerted on GF, which is beneficial to balancing BMP2 dose in a physiological environment. Moreover, the osteogenic differentiation of hMSC was significantly improved on the functionalized GF. Taking advantage of the unique macrostructure from GF as well as the superior mechanical properties and BMP2 release profile supported by the deposited coatings, it is therefore expected that the developed GF could be a promising alternative as innovative bone-forming favorable scaffolds.
Keyphrases