Login / Signup

Maternal effect killing by a supergene controlling ant social organization.

Amaury AvrilJessica PurcellSébastien BéniguelMichel Chapuisat
Published in: Proceedings of the National Academy of Sciences of the United States of America (2020)
Supergenes underlie striking polymorphisms in nature, yet the evolutionary mechanisms by which they arise and persist remain enigmatic. These clusters of linked loci can spread in populations because they captured coadapted alleles or by selfishly distorting the laws of Mendelian inheritance. Here, we show that the supergene haplotype associated with multiple-queen colonies in Alpine silver ants is a maternal effect killer. All eggs from heterozygous queens failed to hatch when they did not inherit this haplotype. Hence, the haplotype specific to multiple-queen colonies is a selfish genetic element that enhances its own transmission by causing developmental arrest of progeny that do not carry it. At the population level, such transmission ratio distortion favors the spread of multiple-queen colonies, to the detriment of the alternative haplotype associated with single-queen colonies. Hence, selfish gene drive by one haplotype will impact the evolutionary dynamics of alternative forms of colony social organization. This killer hidden in a social supergene shows that large nonrecombining genomic regions are prone to cause multifarious effects across levels of biological organization.
Keyphrases