Effects of Temporal Processing on Speech-in-Noise Perception in Middle-Aged Adults.
Kailyn A McFarlaneJason Tait SanchezPublished in: Biology (2024)
Auditory temporal processing is a vital component of auditory stream segregation, or the process in which complex sounds are separated and organized into perceptually meaningful objects. Temporal processing can degrade prior to hearing loss, and is suggested to be a contributing factor to difficulties with speech-in-noise perception in normal-hearing listeners. The current study tested this hypothesis in middle-aged adults-an under-investigated cohort, despite being the age group where speech-in-noise difficulties are first reported. In 76 participants, three mechanisms of temporal processing were measured: peripheral auditory nerve function using electrocochleography, subcortical encoding of periodic speech cues (i.e., fundamental frequency; F0) using the frequency following response, and binaural sensitivity to temporal fine structure (TFS) using a dichotic frequency modulation detection task. Two measures of speech-in-noise perception were administered to explore how contributions of temporal processing may be mediated by different sensory demands present in the speech perception task. This study supported the hypothesis that temporal coding deficits contribute to speech-in-noise difficulties in middle-aged listeners. Poorer speech-in-noise perception was associated with weaker subcortical F0 encoding and binaural TFS sensitivity, but in different contexts, highlighting that diverse aspects of temporal processing are differentially utilized based on speech-in-noise task characteristics.