Insights into the Role of Biopolymer-Based Xerogels in Biomedical Applications.
Abdul Khalil H P SEsam Bashir YahyaHusnul Azan TajarudinVenugopal BalakrishnanHalimatuddahliana NasutionPublished in: Gels (Basel, Switzerland) (2022)
Xerogels are advanced, functional, porous materials consisting of ambient, dried, cross-linked polymeric networks. They possess characteristics such as high porosity, great surface area, and an affordable preparation route; they can be prepared from several organic and inorganic precursors for numerous applications. Owing to their desired properties, these materials were found to be suitable for several medical and biomedical applications; the high drug-loading capacity of xerogels and their ability to maintain sustained drug release make them highly desirable for drug delivery applications. As biopolymers and chemical-free materials, they have been also utilized in tissue engineering and regenerative medicine due to their high biocompatibility, non-immunogenicity, and non-cytotoxicity. Biopolymers have the ability to interact, cross-link, and/or trap several active agents, such as antibiotic or natural antimicrobial substances, which is useful in wound dressing and healing applications, and they can also be used to trap antibodies, enzymes, and cells for biosensing and monitoring applications. This review presents, for the first time, an introduction to biopolymeric xerogels, their fabrication approach, and their properties. We present the biological properties that make these materials suitable for many biomedical applications and discuss the most recent works regarding their applications, including drug delivery, wound healing and dressing, tissue scaffolding, and biosensing.