Interferometric thermometry of ocular tissues for retinal laser therapy.
David VeyssetYueming ZhuoJunya HattoriMohajeet BuckhoryDaniel PalankerPublished in: Biomedical optics express (2022)
Controlling the tissue temperature rise during retinal laser therapy is highly desirable for predictable and reproducible outcomes of the procedure, especially with non-damaging settings. In this work, we demonstrate a method for determining the optical absorption, the thermal conductivity, and the thermal expansion coefficients of RPE and choroid using phase-resolved optical coherence tomography (pOCT). These parameters are extracted from the measured changes in the optical path length (Δ OPL ) using an axisymmetric thermo-mechanical model. This allows the calculation of the temperature rise during hyperthermia, which was further validated by imaging the temperature-sensitive fluorescence at the same location. We demonstrate that, with a temperature uncertainty of ±0.9° C and a peak heating of about 17° C following a laser pulse of 20 ms, this methodology is expected to be safe and sufficiently precise for calibration of the non-damaging retinal laser therapy. The method is directly translatable to in-vivo studies, where we expect a similar precision.