Login / Signup

Identification of male sterility-related genes in Saccharum officinarum and Saccharum spontaneum.

Jinjin SongXiaodan ZhangTyler JonesMing-Li WangRay Ming
Published in: Plant reproduction (2024)
Candidate male sterility genes were identified in sugarcane, which interacts with kinase-related proteins, transcription factors, and plant hormone signaling pathways to regulate stamen and anther development. Saccharum officinarum is a cultivated sugarcane species that its predominant feature is high sucrose content in stems. Flowering is necessary for breeding new cultivars but will terminate plant growth and reduce sugar yield. The wild sugarcane species Saccharum spontaneum has robust and viable pollen, whereas most S. officinarum accessions are male sterile, which is a desirable trait of a maternal parent in sugarcane breeding. To study male sterility and related regulatory pathways in sugarcane, we carried out RNAseq using flowers in different developmental stages between male-sterile S. officinarum accession 'LA Purple' and fertile S. spontaneum accession 'SES208'. Gene expression profiles were used to detect how genes are differentially expressed between male sterile and fertile flowers and to identify candidate genes for male sterility. Weighted gene correlation networks analysis (WGCNA) was conducted to investigate the regulatory networks. Transcriptomic analyses showed that 988 genes and 2888 alleles were differentially expressed in S. officinarum compared to S. spontaneum. Ten differentially expressed genes and thirty alleles were identified as candidate genes and alleles for male sterility in sugarcane. The gene Sspon.03G0007630 and two alleles of the gene Sspon.08G0002270, Sspon.08G0002270-2B and Sspon.08G0014700-1A, were involved in the early stamen or carpel development stages, while the remaining genes were classified into the post-meiosis stage. Gibberellin, auxin, and jasmonic acid signaling pathways are involved in the stamen development in sugarcane. The results expanded our knowledge of male sterility-related genes in sugarcane and generated genomic resources to facilitate the selection of ideal maternal parents to improve breeding efficiency.
Keyphrases