Login / Signup

Charge-Separation-Type Ionic Crystals with Mixed AuI4CoIII2 and AuI4NiIICoIII Hexanuclear Complexes.

Rycce S PratikhaTatsuhiro KojimaNaoto KuwamuraNobuto YoshinariTakumi Konno
Published in: Inorganic chemistry (2020)
Treatment of a digold(I) metalloligand, [AuI2(dppe)(d-Hpen)2] (H2LAu; d-H2pen = d-penicillamine, dppe = 1,2-bis(diphenylphosphino)ethane), with a 1:1 mixture of Co(OAc)2 and Ni(OAc)2 under aerobic conditions resulted in the formation of three types of hexanuclear complexes: [CoIII2(LAu)2]2+, [NiIICoIII(LAu)2]+, and [NiII2(LAu)2]. The addition of NaNO3, M1NO3 (M1 = K, Rb, Cs), and M2(NO3)2 (M2 = Ca, Sr, Ba) to the reaction mixture led to co-crystallization of [CoIII2(LAu)2]2+ and [NiIICoIII(LAu)2]+ as a solid solution to form the charge-separation (CS)-type ionic crystals 1Na, 1M1, and 1M2, respectively, while [NiII2(LAu)2] independently crystallized as a single species (2). In 1Na, [CoIII2(LAu)2]2+ and [NiIICoIII(LAu)2]+ cations assemble in a 1:2 ratio to form a cationic supramolecular octahedron accommodating 4 H3O+ ions, while 10 nitrate ions are packed in each hydrophilic tetrahedral interstice of the crystal to form an anionic adamantane cluster. The overall structures of 1M1 and 1M2 are very similar to that of 1Na, having a CS-type structure composed of cationic supramolecular octahedra with a +12 charge and anionic inorganic clusters with a -10 charge. However, 1M1 contains M1 ions in place of the H3O+ ions in 1Na, and furthermore, a novel rhombic dodecahedron cluster composed of 14 nitrate ions, which encapsulates two M2 ions, is formed in each hydrophilic tetrahedral interstice in 1M2.
Keyphrases
  • water soluble
  • quantum dots
  • liquid chromatography
  • aqueous solution
  • ionic liquid
  • nitric oxide
  • solar cells
  • drinking water
  • mass spectrometry
  • solid state
  • energy transfer