Resonance Energies and Lifetimes from the Analytic Continuation of the Coupling Constant Method: Robust Algorithms and a Critical Analysis.
Thomas SommerfeldJoshua B MeluginPrakash HamalMasahiro EharaPublished in: Journal of chemical theory and computation (2017)
The energy of a metastable state can be computed by adding an artificial stabilizing potential to the Hamiltonian, increasing the stabilization until the metastable state is turned into a bound one, and then further increasing the stabilization until enough bound-state data have been collected so that these can be extrapolated back to vanishing stabilization. The lifetime of the metastable state can be obtained from the same data, but only if the extrapolation is performed by analytic continuation. This extrapolation method is called analytic continuation of the coupling constant (ACCC). Here we introduce preconditioning schemes for two of the three established extrapolation algorithms and critically compare results from all three extrapolation schemes in a variety of situations: As examples for resonance states serve the π* temporary anions of ethylene and formaldehyde as well as a model potential, which provides a case where input data with full numeric precision are available. In the data collection step, three different stabilizing potentials are employed, a Coulomb potential, a short-range Coulomb potential, and a soft-box Voronoi potential. Effects of different orders of the extrapolating Padé approximant are investigated, and last, the energy range of input data for the extrapolation is studied. Moreover, all ACCC results are compared to resonance parameters that have been independently obtained with the same theoretical method, but with a different continuum approach-complex scaling for the model and complex absorbing potentials for the temporary anions.