Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe.
Subhajit RoychowdhuryManoj K JanaJaysree PanSatya N GuinDirtha SanyalUmesh V WaghmareKanishka BiswasPublished in: Angewandte Chemie (International ed. in English) (2018)
Crystalline solids with intrinsically low lattice thermal conductivity (κL ) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κL of 0.35 Wm-1 K-1 in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κL in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor.