Login / Signup

The positive valence system, adaptive behaviour and the origins of reward.

Thomas J BurtonBernard W Balleine
Published in: Emerging topics in life sciences (2022)
Although the hey-day of motivation as an area of study is long past, the issues with which motivational theorists grappled have not grown less important: i.e. the development of deterministic explanations for the particular tuning of the nervous system to specific changes in the internal and external environment and the organisation of adaptive behavioural responses to those changes. Here, we briefly elaborate these issues in describing the structure and function of the 'positive valence system'. We describe the origins of adaptive behaviour in an ascending arousal system, sensitive to peripheral regulatory changes, that modulates and activates various central motivational states. Associations between these motivational states and sensory inputs underlie evaluative conditioning and generate the representation of the 'unconditioned' stimuli fundamental to Pavlovian conditioning. As a consequence, associations with these stimuli can generate Pavlovian conditioned responses through the motivational control of stimulus event associations with sensory and affective components of the valence system to elicit conditioned orienting, consummatory and preparatory responses, particularly the affective responses reflecting Pavlovian excitation and inhibition, arousal and reinforcement, the latter used to control the formation of habits. These affective processes also provoke emotional responses, allowing the externalisation of positive valence in hedonic experience to generate the goal or reward values that mediate goal-directed action. Together these processes form the positive valence system, ensure the maintenance of adaptive behaviour and, through the association of sensory events and emotional responses through consummatory experience, provide the origins of reward.
Keyphrases
  • bipolar disorder
  • transcription factor
  • coronary artery
  • prefrontal cortex
  • energy transfer