Login / Signup

Direct Quantification of the Effect of Ammonium on Aerosol Droplet pH.

Qishen HuangHaoran WeiLinsey C MarrPeter J Vikesland
Published in: Environmental science & technology (2020)
Ammonium is an important atmospheric constituent that dictates many environmental processes. The impact of the ammonium ion concentration on 10-50 μm aerosol droplet pH was quantified using pH nanoprobes and surface-enhanced Raman spectroscopy (SERS). Sample solutions were prepared by mixing 1 M ammonium sulfate (AS), ammonium nitrate (AN), sodium sulfate (SS), or sodium nitrate (SN) solutions with 1 M phosphate buffer (PB) at different volume ratios. Stable pH values were measured for pure PB, AS, and AN droplets at different concentrations. The centroid pH of 1 M PB droplets was ∼11, but when PB was systematically replaced with ammonium (AS- or AN-PB), the centroid pH within the droplets decreased from ≈11 to 5.5. Such a decrease was not observed in sodium (SS- or SN-PB) droplets, and no pH differences were observed between sulfate and nitrate salts. Ammonia partitioning to the gas phase in ammonium-containing droplets was evaluated to be negligible. Raman sulfate peak (∼980 cm-1) intensity measurements and surface tension measurements were conducted to investigate changes in ion distribution. The pH difference between ammonium-containing droplets and ammonium-free droplets is attributed to the alteration of the ion distribution in the presence of ammonium.
Keyphrases