Login / Signup

Machine Learning-Based Perivascular Space Volumetry in Alzheimer Disease.

Katerina DeikeAndreas DeckerPaul ScheyhingJulia HartenNadine ZimmermannDaniel PaechOliver PetersSilka D FreieslebenLuisa-Sophie SchneiderLukas PreisJosef PrillerEike SpruthSlawek AltensteinAndrea LohseKlaus FliessbachOkka KimmichJens WiltfangClaudia BartelsNiels HansenFrank JessenAyda RostamzadehEmrah DüzelWenzel GlanzEnise I IncesoyMichaela ButrynKatharina BuergerDaniel JanowitzMichael EwersRobert PerneczkyBoris-Stephan RauchmannStefan TeipelIngo KilimannDoreen GoerssChristoph LaskeMatthias H MunkAnnika SpottkeNina RoyMichael WagnerSandra RoeskeMichael T HenekaFrederic BrosseronAlfredo RamirezLaura DobischSteffen WolfsgruberLuca KleineidamRenat YakupovMelina StarkMatthias C SchmidMoritz BergerStefan HetzerPeter DechentKlaus SchefflerGabor C PetzoldAnja SchneiderAlexander EfflandAlexander Radbruch
Published in: Investigative radiology (2024)
The very early changes of PVS volume may suggest that alterations in PVS function are involved in the pathophysiology of AD. Overall, the volumetric assessment of centrum semiovale PVS represents a very early imaging biomarker for AD.
Keyphrases
  • machine learning
  • high resolution
  • mild cognitive impairment
  • artificial intelligence
  • big data
  • clinical evaluation