Login / Signup

Climate-driven shifts in algal-bacterial interaction of high-mountain lakes in two years spanning a decade.

Juan Manuel González-OlallaJuan Manuel Medina-SánchezIsmael L LozanoManuel Villar-ArgaizPresentación Carrillo
Published in: Scientific reports (2018)
Algal-bacterial interactions include mutualism, commensalism, and predation. However, how multiple environmental conditions that regulate the strength and prevalence of a given interaction remains unclear. Here, we test the hypothesis that the prevailing algal-bacterial interaction shifted in two years (2005 versus 2015), due to increased temperature (T) and Saharan dust depositions in high-mountain lakes of Sierra Nevada (S Spain). Our results support the starting hypothesis that the nature of the prevailing algal-bacterial interaction shifted from a bacterivory control exerted by algae to commensalism, coinciding with a higher air and water T as well as the lower ratio sestonic nitrogen (N): phosphorous (P), related to greater aerosol inputs. Projected global change conditions in Mediterranean region could decline the functional diversity and alter the role of mixotrophy as a carbon (C) by-pass in the microbial food web, reducing the biomass-transfer efficiency up the web by increasing the number of trophic links.
Keyphrases
  • climate change
  • human health
  • risk factors
  • microbial community
  • wastewater treatment
  • amino acid