Revealing the evolutionary history and contemporary population structure of Pacific salmon in the Fraser River through genome resequencing.
Kris A ChristensenAnne-Marie FloresDionne SakhraniCarlo A BiagiRobert H DevlinBen J G SutherlandRuth E WithlerEric B RondeauBen F KoopPublished in: G3 (Bethesda, Md.) (2024)
The Fraser River once supported massive salmon returns. However, over the last century, the largest returns have consistently been less than half of the recorded historical maximum. There is substantial interest from surrounding communities and governments to increase salmon returns for both human use and functional ecosystems. To generate resources for this endeavor, we resequenced genomes of Chinook (Oncorhynchus tshawytscha), coho (O. kisutch), and sockeye salmon (O. nerka) from the Fraser River at moderate coverage (∼16x). A total of 954 resequenced genomes were analyzed, with 681 collected specifically for this study from tissues sampled between 1997 and 2021. An additional 273 were collected from previous studies. At the species level, Chinook salmon appeared to have 1.6-2.1x more SNPs than coho or sockeye salmon, respectively. This difference may be attributable to large historical declines of coho and sockeye salmon. At the population level, three Fraser River genetic groups were identified for each species using principal component and admixture analyses, which is consistent with previous research and supports the continued use of these groups in conservation and management efforts. Environmental factors and a migration barrier were identified as major factors influencing the boundaries of these genetic groups. Additionally, 20 potentially adaptive loci were identified among the genetic groups. This information may be valuable in new management and conservation efforts. Furthermore, the resequenced genomes are an important resource for contemporary genomics research on Fraser River salmon and have been made publicly available.