On the Inherent Instability of Biocognition: Toward New Probability Models and Statistical Tools.
Rodrick WallaceIrina LeonovaSaikat GochhaitPublished in: Entropy (Basel, Switzerland) (2022)
A central conundrum enshrouds biocognition: almost all such phenomena are inherently unstable and must be constantly controlled by external regulatory machinery to ensure proper function, in much the same sense that blood pressure and the 'stream of consciousness' require persistent delicate regulation for the survival of higher organisms. Here, we derive the Data Rate Theorem of control theory that characterizes such instability via the Rate Distortion Theorem of information theory for adiabatically stationary nonergodic systems. We then outline a novel approach to building new statistical tools for data analysis based on those theorems, focusing on groupoid symmetry-breaking phase transitions characterized by Fisher Zero analogs.