Adipose tissue beiging refers to the process by which beige adipocytes emerge in classical white adipose tissue depots. Beige adipocytes dissipate chemical energy and secrete adipokines, such as classical brown adipocytes, to improve systemic metabolism, which is beneficial for people with obesity and metabolic diseases. Cold exposure and β3-adrenergic receptor (AR) agonist treatment are two commonly used stimuli for increasing beige adipocytes in mice; however, their underlying biological processes are different. Transcriptional analysis of inguinal white adipose tissue (iWAT) has revealed that changes in extracellular matrix (ECM) pathway genes are specific to cold exposure. Hyaluronic acid (HA), a non-sulfated linear polysaccharide produced by nearly all cells, is one of the most common components of ECM. We found that cold exposure significantly increased iWAT HA levels, whereas the β3-AR agonist CL316,243 did not. Increasing HA levels in iWAT by Has2 overexpression significantly increases cold-induced adipose tissue beiging; in contrast, decreasing HA by Spam1 overexpression, which encodes a hyaluronidase that digests HA, significantly decreases cold-induced iWAT beiging. All these data implicate a role of HA in promoting adipose tissue beiging, which is unique to cold exposure. Given the failure of β3-AR agonists in clinical trials for obesity and metabolic diseases, increasing HA could serve as a new approach for recruiting more beige adipocytes to combat metabolic diseases.
Keyphrases
- adipose tissue
- insulin resistance
- extracellular matrix
- high fat diet induced
- high fat diet
- hyaluronic acid
- clinical trial
- high glucose
- diabetic rats
- type diabetes
- metabolic syndrome
- cell proliferation
- drug induced
- magnetic resonance imaging
- magnetic resonance
- electronic health record
- induced apoptosis
- body mass index
- physical activity
- dna methylation
- weight gain
- machine learning
- computed tomography
- cell cycle arrest
- water soluble
- artificial intelligence
- deep learning
- stress induced
- combination therapy
- pi k akt