Login / Signup

Phosphate Changes Effect of Humic Acids on TiO2 Photocatalysis: From Inhibition to Mitigation of Electron-Hole Recombination.

Mingce LongJonathon BrameFan QinJiming BaoQilin LiPedro J J Alvarez
Published in: Environmental science & technology (2016)
A major challenge for photocatalytic water purification with TiO2 is the strong inhibitory effect of natural organic matter (NOM), which can scavenge photogenerated holes and radicals and occlude ROS generation sites upon adsorption. This study shows that phosphate counteracts the inhibitory effect of humic acids (HA) by decreasing HA adsorption and mitigating electron-hole recombination. As a measure of the inhibitory effect of HA, the ratios of first-order reaction rate constants between photocatalytic phenol degradation in the absence versus presence of HA were calculated. This ratio was very high, up to 5.72 at 30 mg/L HA and pH 4.8 without phosphate, but was decreased to 0.76 (5 mg/L HA, pH 8.4) with 2 mM phosphate. The latter ratio indicates a surprising favorable effect of HA on TiO2 photocatalysis. FTIR analyses suggest that this favorable effect is likely due to a change in the conformation of adsorbed HA, from a multiligand exchange arrangement to a complexation predominantly between COOH groups in HA and the TiO2 surface in the presence of phosphate. This configuration can reduce hole consumption and facilitate electron transfer to O2 by the adsorbed HA (indicated by linear sweep voltammetry), which mitigates electron-hole recombination and enhances contaminant degradation. A decrease in HA surface adsorption and hole scavenging (the predominant inhibitory mechanisms of HA) by phosphate (2 mM) was indicated by a 50% decrease in the photocatalytic degradation rate of HA and 80% decrease in the decay rate coefficient of interfacial-related photooxidation in photocurrent transients. These results, which were validated with other compounds (FFA and cimetidine), indicate that anchoring phosphate - or anions that exert similar effects on the TiO2 surface - might be a feasible strategy to counteract the inhibitory effect of NOM during photocatalytic water treatment.
Keyphrases
  • visible light
  • electron transfer
  • solar cells
  • dna repair
  • perovskite solar cells
  • magnetic resonance
  • climate change
  • computed tomography
  • oxidative stress
  • reactive oxygen species
  • drug induced