Cyclophilin A Inhibitors Suppress Proliferation and Induce Apoptosis of MKN45 Gastric Cancer Stem-like Cells by Regulating CypA/CD147-Mediated Signaling Pathway.
Hee Jeong ChoHye Jin JungPublished in: International journal of molecular sciences (2023)
Gastric cancer stem cells (GCSCs) are a subgroup of gastric cancer (GC) cells with high self-renewal and multi-lineage differentiation abilities that lead to tumor initiation, metastasis, drug resistance, and tumor relapse. Therefore, the eradication of GCSCs can contribute to the effective treatment of advanced or metastatic GC. In our previous study, compound 9 (C9), a novel derivative of nargenicin A1, was identified as a potential natural anticancer agent that specifically targeted cyclophilin A (CypA). However, its therapeutic effect and molecular mechanisms of action on GCSC growth have not been assessed. In this study, we investigated the effects of natural CypA inhibitors, including C9 and cyclosporin A (CsA), on the growth of MKN45-derived GCSCs. Compound 9 and CsA effectively suppressed cell proliferation by inducing cell cycle arrest at the G0/G1 phase and promoted apoptosis by activating the caspase cascade in MKN45 GCSCs. In addition, C9 and CsA potently inhibited tumor growth in the MKN45 GCSC-grafted chick embryo chorioallantoic membrane (CAM) model. Furthermore, the two compounds significantly decreased the protein expression of key GCSC markers including CD133, CD44, integrin α6, Sox2, Oct4, and Nanog. Notably, the anticancer activities of C9 and CsA in MKN45 GCSCs were associated with the regulation of CypA/CD147-mediated AKT and mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, our findings suggest that the natural CypA inhibitors C9 and CsA could be novel anticancer agents used to combat GCSCs by targeting the CypA/CD147 axis.
Keyphrases
- cell cycle arrest
- pi k akt
- signaling pathway
- induced apoptosis
- cell death
- cell proliferation
- cancer stem cells
- epithelial mesenchymal transition
- oxidative stress
- squamous cell carcinoma
- small cell lung cancer
- endoplasmic reticulum stress
- clinical trial
- optical coherence tomography
- transcription factor
- drug delivery
- helicobacter pylori infection
- risk assessment
- mass spectrometry
- cancer therapy
- combination therapy
- open label
- double blind
- helicobacter pylori
- protein kinase