Closed-Loop Microreactor on PCB for Ultra-Fast DNA Amplification: Design and Thermal Validation.
Panagiotis SkaltsounisGeorge KokkorisTheodoros G PapaioannouAngeliki TserepiPublished in: Micromachines (2023)
Polymerase chain reaction (PCR) is the most common method used for nucleic acid (DNA) amplification. The development of PCR-performing microfluidic reactors (μPCRs) has been of major importance, due to their crucial role in pathogen detection applications in medical diagnostics. Closed loop (CL) is an advantageous type of μPCR, which uses a circular microchannel, thus allowing the DNA sample to pass consecutively through the different temperature zones, in order to accomplish a PCR cycle. CL μPCR offers the main advantages of the traditional continuous-flow μPCR, eliminating at the same time most of the disadvantages associated with the long serpentine microchannel. In this work, the performance of three different CL μPCRs designed for fabrication on a printed circuit board (PCB) was evaluated by a computational study in terms of the residence time in each thermal zone. A 3D heat transfer model was used to calculate the temperature distribution in the microreactor, and the residence times were extracted by this distribution. The results of the computational study suggest that for the best-performing microreactor design, a PCR of 30 cycles can be achieved in less than 3 min. Subsequently, a PCB chip was fabricated based on the design that performed best in the computational study. PCB constitutes a great substrate as it allows for integrated microheaters inside the chip, permitting at the same time low-cost, reliable, reproducible, and mass-amenable fabrication. The fabricated chip, which, at the time of this writing, is the first CL μPCR chip fabricated on a PCB, was tested by measuring the temperatures on its surface with a thermal camera. These results were then compared with the ones of the computational study, in order to evaluate the reliability of the latter. The comparison of the calculated temperatures with the measured values verifies the accuracy of the developed model of the microreactor. As a result of that, a total power consumption of 1.521 W was experimentally measured, only ~7.3% larger than the one calculated (1.417 W). Full validation of the realized CL μPCR chip will be demonstrated in future work.