Login / Signup

Oxidative capacity varies along the length of healthy human tibialis anterior.

Andreas BossLinda HeskampVincent BreukelsLauren J BainsMark J van UdenArend Heerschap
Published in: The Journal of physiology (2018)
The rate of phosphocreatine (PCr) recovery (kPCr ) after exercise, characterizing muscle oxidative capacity, is traditionally assessed with unlocalized 31 P magnetic resonance spectroscopy (MRS) using a single surface coil. However, because of intramuscular variation in fibre type and oxygen supply, kPCr may be non-uniform within muscles. We tested this along the length of the tibialis anterior (TA) muscle in 10 male volunteers. For this purpose, we employed a 3T MR system with a 31 P/1 H volume transmit coil combined with a home-built 31 P phased-array receive probe, consisting of five coil elements covering the TA muscle length. Mono-exponential kPCr was determined for all coil elements after 40 s of submaximal isometric dorsiflexion (SUBMAX) and incremental exercise to exhaustion (EXH). In addition, muscle functional MRI (1 H mfMRI) was performed using the volume coil after another 40 s of SUBMAX. A strong gradient in kPCr was observed along the TA (P < 0.001), being two times higher proximally vs. distally during SUBMAX and EXH. Statistical analysis showed that this gradient cannot be explained by pH variations. A similar gradient was seen in the slope of the initial post-exercise 1 H mfMRI signal change, which was higher proximally than distally in both the TA and the extensor digitorum longus (P < 0.001) and strongly correlated with kPCr . The pronounced differences along the TA in functional oxidative capacity identify regional variation in the physiological demand of this muscle during everyday activities and have implications for the bio-energetic assessment of interventions to modify its performance and of neuromuscular disorders involving the TA.
Keyphrases
  • skeletal muscle
  • high intensity
  • physical activity
  • resistance training
  • magnetic resonance imaging
  • healthcare
  • magnetic resonance
  • high resolution
  • high throughput
  • body composition
  • living cells