Selective Isolation of Myosin Subfragment-1 with a DNA-Polyoxovanadate Bioconjugate.
Qing ChenXue HuDan-Dan ZhangXu-Wei ChenJian-Hua WangPublished in: Bioconjugate chemistry (2017)
The bioconjugation of a polyoxometalate (POMs), i.e., dodecavanadate (V12O32), to DNA strands produces a functional labeled DNA primer, V12O32-DNA. The grafting of DNA primer onto streptavidin-coated magnetic nanoparticles (SVM) produces a novel composite, V12O32-DNA@SVM. The high binding-affinity of V12O32 with the ATP binding site in myosin subfragment-1 (S1) facilitates favorable adsorption of myosin, with an efficiency of 99.4% when processing 0.1 mL myosin solution (100 μg mL-1) using 0.1 mg composite. Myosin adsorption fits the Langmuir model, corresponding to a theoretical adsorption capacity of 613.5 mg g-1. The retained myosin is readily recovered by 1% SDS (m/m), giving rise to a recovery of 58.7%. No conformational change is observed for myosin after eliminating SDS by ultrafiltration. For practical use, high-purity myosin S1 is obtained by separation of myosin from the rough protein extract from porcine left ventricle, followed by digestion with α-chymotryptic and further isolation of S1 subfragment. The purified myosin S1 is identified with matrix-assisted laser desorption/ionization time-of-flight/mass spectrometry, giving rise to a sequence coverage of 38%.