Nanostructures as Radionuclide Carriers in Auger Electron Therapy.
Nasrin Abbasi GharibkandiJoanna GierałtowskaKamil WawrowiczAleksander BilewiczPublished in: Materials (Basel, Switzerland) (2022)
The concept of nanoparticle-mediated radionuclide delivery in the cancer treatment has been widely discussed in the past decade. In particular, the use of inorganic and organic nanostructures in the development of radiopharmaceuticals enables the delivery of medically important radioisotopes for radionuclide therapy. In this review, we present the development of nanostructures for cancer therapy with Auger electron radionuclides. Following that, different types of nanoconstructs that can be used as carriers for Auger electron emitters, design principles, nanoparticle materials, and target vectors that overcame the main difficulties are described. In addition, systems in which high-Z element nanoparticles are used as radionuclide carriers, causing the emission of photoelectrons from the nanoparticle surface, are presented. Finally, future research opportunities in the field are discussed as well as issues that must be addressed before nanoparticle-based Auger electron radionuclide therapy can be transferred to clinical use.