A Versatile Chemo-Enzymatic Conjugation Approach Yields Homogeneous and Highly Potent Antibody-Drug Conjugates.
Ying XuShijie JinWen-Bin ZhaoWenhui LiuDing DingJie ZhouShuqing ChenPublished in: International journal of molecular sciences (2017)
The therapeutic efficacy of antibodies can be successfully improved through targeted delivery of potent cytotoxic drugs in the form of antibody-drug conjugates. However, conventional conjugation strategies lead to heterogeneous conjugates with undefined stoichiometry and sites, even with considerable batch-to-batch variability. In this study, we have developed a chemo-enzymatic strategy by equipping the C-terminus of anti-CD20 ofatumumab with a click handle using Sortase A, followed by ligation of the payload based on a strain-promoted azide-alkyne cycloaddition to produce homogeneous conjugates. The resulting antibody-drug conjugates fully retained their antigen binding capability and proved to be internalized and trafficked to the lysosome, which released the payload with a favorable efficacy in vitro and in vivo. Thus, this reported method is a versatile tool with maximum flexibility for development of antibody-drug conjugates and protein modification.