Login / Signup

Parallel Evolution of Asco- and Basidiomycete O -Prenyltransferases.

Tim SchäferFabian HaunMarkus GresslerPeter SpitellerDirk Hoffmeister
Published in: Journal of natural products (2024)
Prenyltransferases (PTs) are involved in the biosynthesis of a multitude of pharmaceutically and agriculturally important plant, bacterial, and fungal compounds. Although numerous prenylated compounds have been isolated from Basidiomycota (mushroom-forming fungi), knowledge of the PTs catalyzing the transfer reactions in this group of fungi is scarce. Here, we report the biochemical characterization of an O - and C -prenylating dimethylallyltryptophan synthase (DMATS)-like enzyme LpTyrPT from the scurfy deceiver Laccaria proxima. This PT transfers dimethylallyl moieties to l-tyrosine at the para - O position and to l-tryptophan at atom C-7 and represents the first basidiomycete l-tyrosine PT described so far. Phylogenetic analysis of PTs in fungi revealed that basidiomycete l-tyrosine PTs have evolved independently from their ascomycete counterparts and might represent the evolutionary origin of PTs acting on phenolic compounds in secondary metabolism.
Keyphrases
  • cell wall
  • molecular dynamics
  • single cell
  • genome wide