Fabricating Bis(phthalocyaninato) Terbium SIM into Tetrakis(phthalocyaninato) Terbium SMM with Enhanced Performance through Sodium Coordination.
Yuxiang ChenChao LiuFang MaDongdong QiQingyun LiuHao-Ling SunJianzhuang JiangPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2018)
The non-peripherally substituted 1,4,8,11,15,18,22,25-octa(butoxy)-phthalocyanine-involved unsymmetrical heteroleptic bis(phthalocyaninato) terbium double-decker, Tb(Pc){H[Pc(α-OC4 H9 )8 ]} (Pc=unsubstituted phthalocyanine) (1), was revealed to exhibit typical single ion magnet (SIM) behavior with effective energy barrier, 180 K (125 cm-1 ), and blocking temperature, 2 K, due to the severe deviation of the terbium coordination polyhedron from square-antiprismatic geometry. Fabrication of this double-decker compound into the novel tetrakis(phthalocyaninato) terbium pseudo-quadruple-decker Na2 {Tb(Pc)[Pc(α-OC4 H9 )8 ]}2 (2) single molecule magnet (SMM) not only optimizes the coordination polyhedron of terbium ion towards the square-antiprismatic geometry and intensifies the coordination field strength, but more importantly significantly enhances the molecular magnetic anisotropy in the unsymmetrical bis(phthalocyaninato) double-decker unit, along with the change of the counter cation from H+ of 1 to Na+ of 2, leading to an significantly enhanced magnetic behavior with spin-reversal energy barrier, 528 K (367 cm-1 ), and blocking temperature, 25 K. The present result is surely helpful towards developing novel tetrapyrrole lanthanide SMMs through rational design and self-assembly from bis(tetrapyrrole) lanthanide single ion magnet (SIM) building block.