Login / Signup

Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles.

Zhao-Tao ShiYi-Xiong HuZhubin HuQi ZhangShao-Yu ChenMeng ChenJing-Jing YuGuang-Qiang YinHaitao SunLin XuXiaopeng LiBen L FeringaHai-Bo YangHe TianDa-Hui Qu
Published in: Journal of the American Chemical Society (2020)
The organization of molecular motors in supramolecular assemblies to allow the amplification and transmission of motion and collective action is an important step toward future responsive systems. Metal-coordination-driven directional self-assembly into supramolecular metallacycles provides a powerful strategy to position several motor units in larger structures with well-defined geometries. Herein, we present a pyridyl-modified molecular motor ligand (MPY) which upon coordination with geometrically distinct di-Pt(II) acceptors assembles into discrete metallacycles of different sizes and shapes. This coordination leads to a red-shift of the absorption bands of molecular motors, making these motorized metallacycles responsive to visible light. Photochemical and thermal isomerization experiments demonstrated that the light-driven rotation of the motors in the metallacycles is similar to that in free MPY in solution. CD studies show that the helicity inversions associated with each isomerization step in the rotary cycle are preserved. To explore collective motion, the trimeric motor-containing metallacycle was aggregated with heparin through multiple electrostatic interactions, to construct a multi-component hierarchical system. SEM, TEM, and DLS measurements revealed that the photo- and thermal-responsive molecular motor units enabled selective manipulation of the secondary supramolecular aggregation process without dissociating the primary metallacycle structures. These visible-light-responsive metallacycles, with intrinsic multiple rotary motors, offer prospects for cooperative operations, dynamic hierarchical self-assembled systems, and adaptive materials.
Keyphrases
  • visible light
  • cancer therapy
  • single molecule
  • current status
  • energy transfer
  • growth factor
  • cystic fibrosis
  • high speed