Chemo-, Regio-, Diastereo-, and Enantioselective Palladium Allylic Alkylation of 1,3-Dioxaboroles as Synthetic Equivalents of α-Hydroxyketones.
Barry M TrostJohnathan E SchultzTaiwei ChangMichael R MaduabumPublished in: Journal of the American Chemical Society (2019)
We describe the development of a Pd-catalyzed asymmetric allylic alkylation (Pd-AAA) of acyclic α-hydroxyketones using boronic acids as traceless templates. Condensation of boronic acids with hydroxyketones generates 1,3-dioxaboroles, which can be used directly as pronucleophiles in Pd-AAA reactions. This strategy enables control of the enolate geometry, while removing the issue of O-alkylation. Allylic alcohols can be directly ionized in the presence of Pd(0) and chiral ligands to afford alkylation products with regio- and enantioselectivity. Additionally, a dynamic kinetic asymmetric transformation of allenyl electrophiles affords C-alkylation products in high regio-, diastereo-, and enantioselectivity. To the best of our knowledge, this method represents the first example in Pd-AAA for setting point chirality on a nucleophile simultaneous to stereoinduction on an axial chiral allene.