Login / Signup

Electrocautery-induced molten metal particle generation from total joint replacements: Morphology and chemistry.

Michael J WiegandGregory W KubackiJeremy L Gilbert
Published in: Journal of biomedical materials research. Part B, Applied biomaterials (2021)
Electrosurgical techniques are used during surgery to cauterize, and their damaging effects have primarily been documented in terms of tissue necrosis, charring, and localized heat accumulation. Metallic implants as well as the surgical blade can experience incidental electrosurgical current arcing that results in the generation and transfer of melted metallic particles. This work examines the composition, particle size distribution, and chemical state of the melted alloy surfaces and particles produced in vitro. Using scanning electron microscopy and energy dispersive spectroscopy, a flash-melting particle generation phenomenon between source 304 SSL blades and polished cobalt-chromium-molybdenum (CoCrMo) and titanium-6-aluminum-4-vandaium (Ti6Al4V) surfaces was documented where 304 SSL mixed heterogeneously with the CoCrMo and Ti6Al4V ejecting "splatter" particles from the cautery site. The spherical micron-sized particles were embedded with sub-micron-sized particles with 42% of the total sample population measuring between 0.25 and 0.35 μm in diameter. CoCrMo-304 SSL particles were principally made of high concentrations of iron, oxygen, and nickel with embedded sub-micron-sized particles containing oxygen, chromium, and cobalt with lower concentrations of iron and molybdenum. Ti6Al4V-304 SSL interactions resulted in similar micron-sized particles made up of high concentrations of iron, nickel, and chromium with embedded sub-micron-sized particles containing titanium, oxygen, and small amounts of aluminum. X-ray photoelectron spectroscopy of damaged CoCrMo surfaces confirmed the presence of chromium (VI) following dry electrocautery contact in coagulation mode. The structural effects of electrocautery-induced damage are becoming visible in retrieval analysis, but the long-term physiological implications during the lifetime of the implant from this damage mode have yet to be defined.
Keyphrases