Login / Signup

Lack of linear correlation between dynamic and steady-state cerebral autoregulation.

Daan L K de JongTakashi TarumiJie LiuRong ZhangJurgen A H R Claassen
Published in: The Journal of physiology (2017)
The present study aimed to investigate the relationship between dynamic (dCA) and steady-state cerebral autoregulation (sCA). In 28 healthy older adults, sCA was quantified by a linear regression slope of proportionate (%) changes in cerebrovascular resistance (CVR) in response to proportionate (%) changes in mean blood pressure (BP) induced by stepwise sodium nitroprusside (SNP) and phenylephrine (PhE) infusion. Cerebral blood flow (CBF) was measured at the internal carotid artery (ICA) and vertebral artery (VA) and CBF velocity at the middle cerebral artery (MCA). With CVR = BP/CBF, Slope-CVRICA , Slope-CVRVA and Slope-CVRiMCA were derived. dCA was assessed (i) in supine rest, analysed with transfer function analysis (gain and phase) and autoregulatory index (ARI) fit from spontaneous oscillations (ARIBaseline ), and (ii) with transient changes in BP using a bolus injection of SNP (ARISNP ) and PhE (ARIPhE ). Comparison of sCA and dCA parameters (using Pearson's r for continuous and Spearman's ρ for ordinal parameters) demonstrated a lack of linear correlations between sCA and dCA measures. However, comparisons of parameters within dCA and within sCA were correlated. For sCA slope-CVRVA with Slope-CVRiMCA (r = 0.45, P < 0.03); for dCA ARISNP with ARIPhE (ρ = 0.50, P = 0.03), ARIBaseline (ρ = 0.57, P = 0.03) and PhaseLF (ρ = 0.48, P = 0.03); and for GainVLF with GainLF (r = 0.51, P = 0.01). By contrast to the commonly held assumption based on an earlier study, there were no linear correlations between sCA and dCA. As an additional observation, there was strong inter-individual variability, both in dCA and sCA, in this healthy group of elderly, in a range from low to high CA efficiency.
Keyphrases