Login / Signup

Mechanistic Study of Enhanced Protonation by Chromium(III) in Electrospray Ionization: A Superacid Bound to a Peptide.

Rudradatt R PersaudNnenna E DiekeXinyao JingSkyler LambertNicholas ParsaElizabeth HartmannJohn B VincentCarolyn J CassadyDavid A Dixon
Published in: Journal of the American Society for Mass Spectrometry (2019)
Addition of trivalent chromium, Cr(III), to solutions undergoing electrospray ionization (ESI) enhances protonation and leads to formation of [M + 2H]2+ for peptides that normally produce [M + H]+. This effect is explored using electronic structure calculations at the density functional theory (DFT) level to predict the energetics of various species that are potentially important to the mechanism. Gas- and solution-phase reaction free energies for glycine and its anion reacting with [Cr(III)(H2O)6]3+ and for dehydration of these species have been predicted, where glycine is used as a simple model for a peptide. For comparison, calculations were also performed with Fe(III), Al(III), Sc(III), Y(III), and La(III). Removal of water from these complexes, as would occur during the ESI desolvation process, results in species that are highly acidic. The calculated pKa of Cr(III) with a single solvation shell is -10.8, making [Cr(III)(H2O)6]3+ a superacid that is more acidic than sulfuric acid (pKa = -8.8). Binding to glycine requires removal of two aqua ligands, which gives [Cr(III)(H2O)4]3+ that has an extremely acidic pKa of -28.8. Removal of additional water further enhances acidity, reaching a pKa of -84.7 for [Cr(III)(H2O)]3+. A mechanism for enhanced protonation is proposed that incorporates computational and experiment results, as well as information on the known chemistry of Cr(III), which is substitutionally inert. The initial step involves binding of [Cr(III)(H2O)4]3+ to the deprotonated C-terminus of a peptide. As the drying process during ESI strips water from the complex, the resulting superacid transfers protons to the bound peptide, eventually leading to formation of [M + 2H]2+.
Keyphrases
  • density functional theory
  • molecular dynamics
  • ms ms
  • healthcare
  • room temperature
  • health information
  • genetic diversity
  • drug discovery
  • transition metal