Titanium reinforced calcium phosphate improves bone formation and osteointegration in ovine calvaria defects: a comparative 52-weeks study.
Sara GallinettiLars Kihlström Burenstam LinderJonas ÅbergChristopher IlliesHåkan EngqvistUlrik BirgerssonPublished in: Biomedical materials (Bristol, England) (2020)
In a 52-week ovine calvaria implantation model, the restoration of cranial defects with a bare titanium mesh (Ti-mesh) and a titanium mesh embedded in a calcium phosphate (CaP-Ti) were evaluated in seven animals. During the study, no major clinical abnormalities were observed, and all sheep presented a normal neurologic assessment. Blood and CSF analysis, made at termination, did not show any abnormalities. No indentation of the soft tissue was observed for either test article; however, the Ti-mesh burr-hole covers were associated with filling of the calvarial defect by fibrous tissue mainly. Some bone formation was observed at the bottom of the created defect, but no significant bone was formed in the proximity of the implant. The defect sites implanted with CaP-Ti were characterized by a moderate degradation of the calcium phosphate that was replaced by mature bone tissue. Calcium-phosphate-filled macrophages were observed in all animals, indicating that they might play a vital role in osteogenesis. The newly formed bone was present, especially at the bony edges of the defect and on the dura side. Integration of the titanium mesh in a calcium phosphate improved bone formation and osteointegration in comparison to a bare titanium mesh.