Temperature, humidity, and ionisation effect of iodine oxoacid nucleation.
Birte RörupXu-Cheng HeJiali ShenRima BaalbakiLubna DadaMikko SipiläJasper KirkbyMarkku KulmalaAntonio AmorimAndrea BaccariniDavid M BellLucía Caudillo-PlathJonathan DuplissyHenning FinkenzellerAndreas KürtenHoussni LamkaddamChuan Ping LeeVladimir MakhmutovHanna E ManninenGuillaume MarieRuby MartenBernhard MentlerAntti OnnelaMaxim PhilippovCarolin Wiebke ScholzMario SimonDominik StolzenburgYee Jun ThamAntónio ToméAndrea C WagnerMingyi WangDongyu WangYonghong WangStefan K WeberMarcel Zauner-WieczorekUrs BaltenspergerJoachim CurtiusNeil M DonahueImad El HaddadRichard C FlaganArmin HanselOttmar MöhlerTuukka PetäjäRainer VolkamerDouglas WorsnopKatrianne LehtipaloPublished in: Environmental science: atmospheres (2024)
Iodine oxoacids are recognised for their significant contribution to the formation of new particles in marine and polar atmospheres. Nevertheless, to incorporate the iodine oxoacid nucleation mechanism into global simulations, it is essential to comprehend how this mechanism varies under various atmospheric conditions. In this study, we combined measurements from the CLOUD (Cosmic Leaving OUtdoor Droplets) chamber at CERN and simulations with a kinetic model to investigate the impact of temperature, ionisation, and humidity on iodine oxoacid nucleation. Our findings reveal that ion-induced particle formation rates remain largely unaffected by changes in temperature. However, neutral particle formation rates experience a significant increase when the temperature drops from +10 °C to -10 °C. Running the kinetic model with varying ionisation rates demonstrates that the particle formation rate only increases with a higher ionisation rate when the iodic acid concentration exceeds 1.5 × 10 7 cm -3 , a concentration rarely reached in pristine marine atmospheres. Consequently, our simulations suggest that, despite higher ionisation rates, the charged cluster nucleation pathway of iodic acid is unlikely to be enhanced in the upper troposphere by higher ionisation rates. Instead, the neutral nucleation channel is likely to be the dominant channel in that region. Notably, the iodine oxoacid nucleation mechanism remains unaffected by changes in relative humidity from 2% to 80%. However, under unrealistically dry conditions (below 0.008% RH at +10 °C), iodine oxides (I 2 O 4 and I 2 O 5 ) significantly enhance formation rates. Therefore, we conclude that iodine oxoacid nucleation is the dominant nucleation mechanism for iodine nucleation in the marine and polar boundary layer atmosphere.